\(\int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\) [406]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 254 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 \left (7 b^2 B+5 a (2 A b+a B)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (7 b^2 B+5 a (2 A b+a B)\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

[Out]

2/9*a^2*A*sin(d*x+c)/d/sec(d*x+c)^(7/2)+2/7*a*(2*A*b+B*a)*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/45*(7*A*a^2+9*A*b^2+
18*B*a*b)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/21*(7*b^2*B+5*a*(2*A*b+B*a))*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/15*(7*A
*a^2+9*A*b^2+18*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*c
os(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/21*(7*b^2*B+5*a*(2*A*b+B*a))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2
*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {4109, 4132, 3854, 3856, 2719, 4130, 2720} \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \left (7 a^2 A+18 a b B+9 A b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (7 a^2 A+18 a b B+9 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 \left (5 a (a B+2 A b)+7 b^2 B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 \left (5 a (a B+2 A b)+7 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a (a B+2 A b) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(9/2),x]

[Out]

(2*(7*a^2*A + 9*A*b^2 + 18*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (2
*(7*b^2*B + 5*a*(2*A*b + a*B))*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^
2*A*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2)) + (2*a*(2*A*b + a*B)*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*(7
*a^2*A + 9*A*b^2 + 18*a*b*B)*Sin[c + d*x])/(45*d*Sec[c + d*x]^(3/2)) + (2*(7*b^2*B + 5*a*(2*A*b + a*B))*Sin[c
+ d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4109

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2*(csc[(e_.) + (f_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[a^2*A*Cos[e + f*x]*((d*Csc[e + f*x])^(n + 1)/(d*f*n)), x] + Dist[1/(d*n), Int[(d
*Csc[e + f*x])^(n + 1)*(a*(2*A*b + a*B)*n + (2*a*b*B*n + A*(b^2*n + a^2*(n + 1)))*Csc[e + f*x] + b^2*B*n*Csc[e
 + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}-\frac {2}{9} \int \frac {-\frac {9}{2} a (2 A b+a B)+\left (A \left (-\frac {7 a^2}{2}-\frac {9 b^2}{2}\right )-9 a b B\right ) \sec (c+d x)-\frac {9}{2} b^2 B \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}-\frac {2}{9} \int \frac {-\frac {9}{2} a (2 A b+a B)-\frac {9}{2} b^2 B \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx-\frac {1}{9} \left (-7 a^2 A-9 A b^2-18 a b B\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {1}{15} \left (-7 a^2 A-9 A b^2-18 a b B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx-\frac {1}{7} \left (-7 b^2 B-5 a (2 A b+a B)\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (7 b^2 B+5 a (2 A b+a B)\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (-7 b^2 B-5 a (2 A b+a B)\right ) \int \sqrt {\sec (c+d x)} \, dx-\frac {1}{15} \left (\left (-7 a^2 A-9 A b^2-18 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (7 b^2 B+5 a (2 A b+a B)\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (\left (-7 b^2 B-5 a (2 A b+a B)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 \left (7 b^2 B+5 a (2 A b+a B)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 A \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (7 b^2 B+5 a (2 A b+a B)\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.59 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.74 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (168 \left (7 a^2 A+9 A b^2+18 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+120 \left (10 a A b+5 a^2 B+7 b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\left (7 \left (43 a^2 A+36 A b^2+72 a b B\right ) \cos (c+d x)+5 \left (156 a A b+78 a^2 B+84 b^2 B+18 a (2 A b+a B) \cos (2 (c+d x))+7 a^2 A \cos (3 (c+d x))\right )\right ) \sin (2 (c+d x))\right )}{1260 d} \]

[In]

Integrate[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(9/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(168*(7*a^2*A + 9*A*b^2 + 18*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 120*(10
*a*A*b + 5*a^2*B + 7*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (7*(43*a^2*A + 36*A*b^2 + 72*a*b*B)
*Cos[c + d*x] + 5*(156*a*A*b + 78*a^2*B + 84*b^2*B + 18*a*(2*A*b + a*B)*Cos[2*(c + d*x)] + 7*a^2*A*Cos[3*(c +
d*x)]))*Sin[2*(c + d*x)]))/(1260*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(609\) vs. \(2(278)=556\).

Time = 29.73 (sec) , antiderivative size = 610, normalized size of antiderivative = 2.40

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-1120 A \,a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (2240 A \,a^{2}+1440 A a b +720 B \,a^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-2072 A \,a^{2}-2160 A a b -504 A \,b^{2}-1080 B \,a^{2}-1008 B a b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (952 A \,a^{2}+1680 A a b +504 A \,b^{2}+840 B \,a^{2}+1008 B a b +420 b^{2} B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-168 A \,a^{2}-480 A a b -126 A \,b^{2}-240 B \,a^{2}-252 B a b -210 b^{2} B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+150 A a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-189 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+75 B \,a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+105 b^{2} B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-378 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b \right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(610\)
parts \(\text {Expression too large to display}\) \(820\)

[In]

int((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-2/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1120*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^10+(2240*A*a^2+1440*A*a*b+720*B*a^2)*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-2072*A*a^2-2160*A*a*b-504*A
*b^2-1080*B*a^2-1008*B*a*b)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(952*A*a^2+1680*A*a*b+504*A*b^2+840*B*a^2+
1008*B*a*b+420*B*b^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-168*A*a^2-480*A*a*b-126*A*b^2-240*B*a^2-252*B*
a*b-210*B*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+150*A*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1
/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-189*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+75*B*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+105*b^2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-378*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/si
n(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.11 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {15 \, \sqrt {2} {\left (5 i \, B a^{2} + 10 i \, A a b + 7 i \, B b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 15 \, \sqrt {2} {\left (-5 i \, B a^{2} - 10 i \, A a b - 7 i \, B b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (-7 i \, A a^{2} - 18 i \, B a b - 9 i \, A b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (7 i \, A a^{2} + 18 i \, B a b + 9 i \, A b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (35 \, A a^{2} \cos \left (d x + c\right )^{4} + 45 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )^{3} + 7 \, {\left (7 \, A a^{2} + 18 \, B a b + 9 \, A b^{2}\right )} \cos \left (d x + c\right )^{2} + 15 \, {\left (5 \, B a^{2} + 10 \, A a b + 7 \, B b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{315 \, d} \]

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

-1/315*(15*sqrt(2)*(5*I*B*a^2 + 10*I*A*a*b + 7*I*B*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x +
c)) + 15*sqrt(2)*(-5*I*B*a^2 - 10*I*A*a*b - 7*I*B*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c
)) + 21*sqrt(2)*(-7*I*A*a^2 - 18*I*B*a*b - 9*I*A*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*
x + c) + I*sin(d*x + c))) + 21*sqrt(2)*(7*I*A*a^2 + 18*I*B*a*b + 9*I*A*b^2)*weierstrassZeta(-4, 0, weierstrass
PInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(35*A*a^2*cos(d*x + c)^4 + 45*(B*a^2 + 2*A*a*b)*cos(d*x +
c)^3 + 7*(7*A*a^2 + 18*B*a*b + 9*A*b^2)*cos(d*x + c)^2 + 15*(5*B*a^2 + 10*A*a*b + 7*B*b^2)*cos(d*x + c))*sin(d
*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(9/2), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(9/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(9/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(9/2), x)